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Elementary constraints on autocorrelation function scalings
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Elementary algebraic constraints on the form of an autocorrelation functionC(tw1t,tw) rule out some
two-time scalings found in the literature as possible long-time asymptotic forms. The same argument leads to
the realization that two usual definitions ofmany-time scalerelaxation for aging systems are not equivalent.
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There are elementary model-independent constraints
the autocorrelation of an observable. For example, if an
servableA(t1) is very correlated toA(t2), andA(t2) is very
correlated toA(t3), it is clear thatA(t1) cannot be uncorre
lated from A(t3). Such kind of constraint has long bee
taken into account for the autocorrelations of quantities
equilibrium, but, surprisingly enough, has not been exploi
in nonstationary ‘‘aging’’ situations.

Consider first the case of real observableA. We can derive
inequalities satisfied by the normalized autocorrelation fu
tions

Ci j 5
^A~ t i !A~ t j !&

A^A2~ t i !&^A
2~ t j !&

~1!

as follows. Take arbitrary real numbersv1 , . . . ,v r and con-
struct the following expectation value~throughout this pape
times are adimensional!:

(
i , j 51

r

Ci j v iv j5K S (
1

r
v iA~ t i !

A^A2~ t i !&
D 2L >0 ; v1 , . . . ,v r .

~2!

This implies that anyr 3r matrix Ci j has to be non-negative
i.e. all its eigenvalues should be non-negative. In particu
demanding that the determinant ofCi j be positive we get, for
any two times

12C12
2 >0, ~3!

and for any three times (r 53)

12C12
2 2C23

2 2C13
2 12C12C23C13>0. ~4!

A simple rearrangement of this formula gives

uC132C12C23u<~12C12
2 !1/2~12C23

2 !1/2, ~5!

which, if C12 andC23 are positive, implies

C13>C12C232~12C12
2 !1/2~12C23

2 !1/2. ~6!

This is the algebraic expression of the fact mentioned abo
if C12 andC23 are close to 1, thenC13 is too.

Autocorrelations that arise frequently in particle syste
are the coherent and incoherent functions obtained from
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Z̄i j
coh[K (

a
eikW•[xWa(t i )2xWa(t j )] L ;

Z̄i j
inc[K (

ab
eikW•(xWa(t i )2xWb(t j ))L . ~7!

We shall consider the normalized versions obtained from
real part of

Ci j
coh[ReZi j

coh ; Zi j
coh5Zji*

coh5
Z̄i j

coh

AZ̄ii
cohZ̄j j

coh
~8!

and similarly forZi j
inc and Ci j

inc . The normalization for the
incoherent version is constant, while for the coherent co
lation it is the modulus of the equal-time structure functi
evaluated at the wave vectorkW .

One can obtain a constraint similar to Eq.~6!

C13
R>12F~C12,C23! ~9!

with F vanishing whenC12 andC23 are close to 1~see the
Appendix for the precise form ofF and its derivation!.

Before continuing, let us point out that, because w
matters in this argument are only the values of correlati
and their time orderings, we immediately conclude that i
two-time correlation functionC(t1tw ,tw) satisfies the cri-
teria ~6! or ~9!, so does any time reparametrizationC„h(t
1tw),h(tw)…, with any monotonic and otherwise arbitraryh.
~Note thath acts on total times, rather than on time diffe
ences!.

We have written the inequalities for the normalized co
relations. This is slightly nonstandard, although implies
modification in a stationary case, as the normalization fac
is then a constant. Even in a nonstationary aging situatio
we are interested in the scaling regime in which all times
large, the normalization becomes a constant,

N`[ lim
t→`

^uA~ t !u2&, ~10!

a limit that in a relaxational case exists and is non-negat
since it is the expectation value of a positive operator.
shall assume that the correlation studied is such that
equal-time valueN` does not tend to zero at large times.
©2002 The American Physical Society01-1
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I. CONDITIONS ON THE SCALING VARIABLE

The simplest correlation form for an aging system is

C~t1tw ,tw!5C1~t!1qCaging~t1tw ,tw!, ~11!

where we have setCaging(tw ,tw)51 andq is the Edwards-
Anderson ‘‘nonergodicity’’ parameter. Perhaps the most f
quently used form forCaging(t1tw ,tw) is @1,2#

Caging~t1tw ,tw!5C2S t

tw
mD ~12!

or, more generally

Caging~t1tw ,tw!5C2S t

g~ tw! D . ~13!

To obtain g from experimental data, one computes t
time t* (tw) for the correlation to fall to some valueC* . This
fixes g(tw)5t* (tw), but one has to check thatg(tw) does
not depend on the chosen value ofC* .

Let us see thatfor any g(tw) growing faster than tw ~e.g.,
tw
m with m.1) this scaling form is inconsistent, in the sense

that there can be no continuous large-tw limit for C2. In par-
ticular, the fitting procedure mentioned above necessa
fails to give an uniqueg(tw) if taken to very long times.

We first consider the case in which the stationary par
absent@C1(t)50# and then show that the argument hol
also for the more general form~11!. Assume there is a
smooth, nonincreasing scaling functionC2. Choose three
times t1,t2,t3 such thatt1@1 and 0,Caging(t2 ,t1),1
and 0,Caging(t3 ,t2),1. For this to be possible, the argu
ments inC2 should be nonzero and finite. Ifm.1, this re-
quires that, ast1→`,

t22t1

t1
m

;
t2

t1
m

and
t32t2

t2
m

;
t3

t2
m

~14!

should be finite numbers. Writing

t32t1

t1
m

;
t3

t1
m

5S t3

t2
mD S t2

t1
mD m

t1
m(m21)2t1

2(m21)→`, ~15!

we notice that under these circumstancesCaging(t3 ,t1)
→C2(`): even though the two correlationsCaging(t2 ,t1) and
Caging(t3 ,t2) can be as close to 1 as one wishes, the th
correlation Caging(t3 ,t1) takes the smallest possible valu
~usually zero!. Hence, the scaling violates Eq.~6! or ~9!, and
is hence not possible. The argument goes through for
g(tw) that grows faster thantw .

In order to extend the reasoning to the general case~11!, it
suffices to note that one can replace the observablesA(t i) by
a smoothed set

Âs~ t i !5E
0

`

dt8A~ t8!e(t82t i )
2/s2

~16!
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and run the preceding argument for the normalized corr
tions of theÂs(t i). It is easy to check that for larges, the
stationary part is ironed out, and the form~11! reduces to the
one assumed above. One can also check that a finite su
terms~13! with someg(tw) growing faster thantw still lead
to impossible asymptotic scalings.

II. CONDITIONS ON THE SCALING FUNCTION

We have shown that there are two-time scaling variab
that are impossible as asymptotic scaling forms—whate
the form of the scaling functionC2. Other scaling variables
are, in principle, legitimate, although there are in those ca
conditions on the scaling function. Consider the station
case in which correlations depend on time-differences,

C~t1tw ,tw!5C1~ utu!. ~17!

Then,

E dt8C1~ ut2t8u!eivt8dt85Ĉ~v!eivt ~18!

means that the Fourier componentsĈ(v) are the eigenval-
ues, and the condition of positivity becomes the positiv
condition on the Fourier componentsĈ(v). A similar condi-
tion can be found for the domain-growth correlation form

Caging~t1tw ,tw!5C2S L~ tw!

L~ tw1t! D for t>0 ~19!

with some monotonically increasing functionL(t). Writing

Caging~t1tw ,tw!5C2@eu ln L(tw)2 ln L(tw1t)u# ~20!

we realize that we are back in the stationary case, with
time a scaling functionC̃(x)[C2(ex), and the time reparam
etrizationh(t)5 ln@L(t)#. Furthermore, because the additio
of two positive operators is a positive operator, we conclu
that the additive form

C~t1tw ,tw!5C1~ utu!1qC2S L~ tw!

L~ tw1t! D ~21!

is admissible if each term is admissible separately.

III. SUPERAGING

Consider a correlation having scaling form

C~t1tw ,tw!5CS ln tw

ln~t1tw! D , ~22!

where the times are adimensional. The scaling happen
several real systems, it corresponds, for example, to loga
mic domain growth@4#. It is an example of a ‘‘superaging’
@5# situation@i.e., one where the scaling functionL(t) in the
form ~19! grows slower than a power of time#.

Let us show that
1-2



a

or
s

o
lp

ac
n-
-

e

,
th

c-
ss

l-
b

,’
le
,

he

se
ce

pon
ct
rac-
ery
riz-
The

in
ga-
of

al-
i-
suc-

and

-

BRIEF REPORTS PHYSICAL REVIEW E66, 017101 ~2002!
CS ln tw

ln~t1tw! D;E
1

`

dmr~m!expS 2
t

tw
mD

with r~m!52
d

dm
CS 1

m D . ~23!

Put x[ ln t/ln tw . For tw→`, we have that lntw /@ln(t
1tw)#;1/x for x.1, and lntw /@ln(t1tw)#;1 for x<1.
Hence,

E
1

`

dmr~m!expS 2
t

tw
mD 5E

1

`

dmr~m!exp~2tw
(x2m)!

;E
1

`

dmr~m!Q~m2x!, ~24!

whereQ is the step function. The last relation becomes ex
in the limit of largetw . The integral forx<1 yields 1, and
for x.1

E
x

`

dmr~m!5CS 1

xD , ~25!

where we have used the form ofr in Eq. ~23!.
Equation~23! shows that one obtains an admissible c

relation function as a superposition of infinitely many term
of the form ~12! havingm.1.

IV. MANY TIME SCALES

The distinction between aging systems having two
more than two time scales is of importance since it he
distinguish the underlying physics. Indeed, the absence
many time scales in spin glass dynamics is a strong obst
for the identification of realistic systems with their mea
field counterpart@2,6#. Under these circumstances, it is im
portant to point out that two definitions of ‘‘many tim
scales’’ found in the literature are inequivalent.

Consider the following definition of time scale.
Definition 1. If a correlation is a sum of terms of the form

Ca„t/ga(tw)…, with eachga(tw) growing at a different rate
then each such term defines a different time scale. With
definition the logarithmic domain-growth law~22! has infi-
nitely many time scales, as we see from Eq.~23!.

A different definition that arises naturally in the constru
tion of the analytic solution of the aging dynamics of gla
models@3,2# is the following.

Definition 2. Two correlation valuesc and c* belong to
the same time scale if, given thatC(t2 ,t1)5c andC(t3 ,t2)
5c* , C(t3 ,t1) stays smaller than min(c,c* ) in the large time
limit.

Now, it is easy to check that with this definition the sca
ing ~22! consists of a single time scale, and it can be taken
the reparametrizationt→h(t) to the simple aging form. We
conclude that, depending on the definition of ‘‘time scale
we have in this case one or infinitely many slow time sca
Hence, we have shown that definitions 1 and 2 are not
general equivalent.
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The reason why Definition 2 is the natural one for t
analytic treatment@2,3# is that this way of introducing time
scales is insensitive to time reparametrizationst→h(t), since
times enter only through their ordering. This is not the ca
of Definition 1, under which a one-time scale dependen
tw /(t1tw) becomes an infinite-time scale dependence u
reparametrizationt→ ln t. Physically, robustness with respe
to time reparametrizations is a relevant feature of a cha
terization of slow dynamics since in such systems a v
weak perturbation can have the effect of time reparamet
ing the aging part of the correlations and responses.
most clear examples of this are the growth law of domains
coarsening systems—which is taken from power law to lo
rithmic by an arbitrarily weak pinning field, and the effect
shear in soft glasses, which eliminates aging altogether.

In conclusion, we have emphasized that a two-time sc
ing is not a generic function of two variables, but has lim
tations that become manifest when one considers three
cessive times.

APPENDIX

Taking arbitrary complex numbersv1 , . . . ,v r it is easy to
show that, just as in the real case, both for the coherent
for the incoherent function

(
i , j 51

r

Zi j v i* v j>0 ; v1 , . . . ,v r . ~A1!

This implies that all the eigenvalues of anyr 3r matrix Zi j
are non-negative.~We have dropped the labelinc andcoh,
as the derivation applies to both.!

Let us obtain a bound~9!. Demanding that the determi
nant of a 333 matrix be positive, we have

12uZ12u22uZ23u22uZ13u21Z12Z23Z13* 1Z12* Z23* Z13>0.
~A2!

Rearranging terms,

~12uZ12u2!~12uZ23u2!>uZ132Z12Z23u2. ~A3!

Put Di j [(12Zi j ). Then, Eq.~A3! reads

~12uZ12u2!~12uZ23u2!>uD132D122D231D12D23u2.
~A4!

Applying the inequalityuau<ua2bu1ubu to Eq.~A4! we ob-
tain

uD13u<uD132D122D231D12D23u1uD121D232D12D23u,
~A5!

which, inserting Eq.~A4! implies

uD13u<~12uZ12u2!1/2~12uZ23u2!1/21uD121D232D12D23u.
~A6!

We can express this bound exclusively in terms ofC12 and
C23. First, note that

~12uZi j u2!<~12uCi j u2! ~A7!
1-3
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since addition of the square of the imaginary part can o
make the bracket larger. We also have

uDi j u25u12Zi j u25122Ci j 1uZi j u2

52~12Ci j !2~12uZi j u2!<2~12Ci j !, ~A8!

where we have used thatuZi j u2,1. Inserting these two las
inequalities in Eq.~A6!, we get

u12Z13u<F ~A9!

with
01710
y F[~12uC12u2!1/2~12uC23u2!1/21A2u12C12u1/2

1A2u12C23u1/212u12C12u1/2u12C23u1/2. ~A10!

Z lies within a circle of radiusF in the complex plane cen
tered in one, hence we get

C13>12F. ~A11!

We can see that whenC12 and C23 are close to unity,C13
cannot be small. Perhaps a better or simpler bound can
obtained, but this is enough for the present purposes.
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