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Elementary constraints on autocorrelation function scalings
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Elementary algebraic constraints on the form of an autocorrelation fun€t{op+ 7,t,) rule out some
two-time scalings found in the literature as possible long-time asymptotic forms. The same argument leads to
the realization that two usual definitions wfiany-time scaleelaxation for aging systems are not equivalent.
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There are elementary model-independent constraints on — - -
the autocorrelation of an observable. For example, if an ob- Zﬁ°h5<2 e'k'[xa(“)_xa(ti)]>:
servableA(t,) is very correlated té\(t,), andA(t,) is very 2
correlated toA(tg), it is clear thatA(t;) cannot be uncorre- —inc R (Rt =Ra(t)
lated from A(t3). Such kind of constraint has long been Z; E<2b e ati) bt > )
taken into account for the autocorrelations of quantities in 2
equilibrium, but, surprisingly enough, has not been exploite
in nonstationary “aging” situations.

Consider first the case of real observahlé\Ve can derive
inequalities satisfied by the normalized autocorrelation func-

({Ne shall consider the normalized versions obtained from the
real part of

tions coh_ coh. coh_ »%coh_ Zichh
Cij =ReZi"; Zj'=Zj _?] ®)
Com (A(t)A(L))) 0 NZi'Z5?
! V<A2(t|)><A2(tJ)> I inc inc . .
and similarly forZ;;® and Cj;~. The normalization for the
as follows. Take arbitrary real numbers, ... v, and con- incoherent version is constant, while for the coherent corre-
struct the following expectation valuéroughout this paper 1ation it is the modulus of tbe equal-time structure function
times are adimensional evaluated at the wave vectkr
One can obtain a constraint similar to E§)
r r 2
S con | [3 2AW Ty <
2 TP | 4 Ay |- I C13=1-F(Cy12,Cp9) 9
)

with F vanishing wherC,, and C,; are close to Isee the
This implies that any Xr matrix C;; has to be non-negative, Appendix for the precise form af and its derivation
i.e. all its eigenvalues should be non-negative. In particular, Before continuing, let us point out that, because what
demanding that the determinant@f; be positive we get, for matters in this argument are only the values of correlations

any two times and their time orderings, we immediately conclude that if a
two-time correlation functiorC(r+t,,,t,) satisfies the cri-
1-C2,>0, (3)  teria(6) or (9), so does any time reparametrizati@th(r
+1,,),h(t,)), with any monotonic and otherwise arbitrary
and for any three times & 3) (Note thath acts on total times, rather than on time differ-
ences.
1—C2,— C35,— C3,;+2C1,Cp3C13=0. (4) We have written the inequalities for the normalized cor-
relations. This is slightly nonstandard, although implies no
A simple rearrangement of this formula gives modification in a stationary case, as the normalization factor
is then a constant. Even in a nonstationary aging situation, if
|C13— C1,Cog<(1— C§2)1/2(1_C§3) 12 (5) we are interested in the scaling regime in which all times are

large, the normalization becomes a constant,
which, if C;, andC,; are positive, implies
N..= lim (|A(1)|?), (10
C13=>C1Cas— (1-CYYA1-C3p*2 (6) o

This is the algebraic expression of the fact mentioned above limit that in a relaxational case exists and is non-negative,
if C1, andC,; are close to 1, thef 5 is too. since it is the expectation value of a positive operator. We
Autocorrelations that arise frequently in particle systemsshall assume that the correlation studied is such that its

are the coherent and incoherent functions obtained from equal-time valueN., does not tend to zero at large times.
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I. CONDITIONS ON THE SCALING VARIABLE and run the preceding argument for the normalized correla-

The simplest correlation form for an aging system is  tions of theA(,(_ti).. It is easy to check that for large, the
stationary part is ironed out, and the foffd) reduces to the

C(7+1ty ) =Co(7) +dCaging T+ tw tw), (11)  one assumed above. One can also check that a finite sum of
ame terms(13) with someg(t,,) growing faster than,, still lead
where we have S ,qing(ty,tw) =1 andq is the Edwards- 10 impossible asymptotic scalings.
Anderson “nonergodicity” parameter. Perhaps the most fre-

quently used form foCging(7+ 1ty ,ty) is[1,2] II. CONDITIONS ON THE SCALING FUNCTION
We have shown that there are two-time scaling variables
T . . . .
Caging( T+ twtw) =C; ” (12) that are impossible as asympto'uc scaling fqrms—whatever
th the form of the scaling functiod,. Other scaling variables

are, in principle, legitimate, although there are in those cases
or, more generally conditions on the scaling function. Consider the stationary
case in which correlations depend on time-differences,

Caging(7+thtw)zcz<g(T7-\Al))- (13 C(7+ty,tw)=Ci(|7]). a7

To obtaing from experimental data, one computes theThen’

time 7* (t,,) for the correlation to fall to some valu&* . This - . _
fixes g(t,,)=7*(t,), but one has to check thaft,) does f dt’Cy(Jt—t'))e't dt’ =C(w)e'“! (19
not depend on the chosen value@f.

Let us see thafor any o(t,,) growing faster than (e.g, . A .
th, with w>1) this scaling form is inconsistenin the sense means that the Fourier componeifw) are the eigenval-

that there can be no continuous latgelimit for C,. In par- ues, _gnd the condﬂm_n of posmwt)A/ becom‘?s .the p05|_t|V|ty
ticular, the fitting procedure mentioned above necessarilgondition on the Fourier componerti¢ ). A similar condi-

fails to give an uniquey(t,,) if taken to very long times. ion can be found for the domain-growth correlation form
We first consider the case in which the stationary part is L(t,)

absent[C;(7)=0] and then show that the argument_holds Caging(7'+tWrtw):CZ<—W for =0 (19

also for the more general fornill). Assume there is a L(ty+7)

smooth, nonincreasing scaling functi@ahh. Choose three ) ) ) ) ) i
times t;<t,<ts such thatt;>1 and 0<C,ging(ts,ty) <1 with some monotonically increasing functidrt). Writing
and 0<Cgging(ts,t2)<1. For this to be possible, the argu- _ I L(ty) —In L(ty,+ 7|

ments inC, should be nonzero and finite. Jf>1, this re- Caging( 7+ tw tw) =Co[€ ] (20

quires that, as; —c, we realize that we are back in the stationary case, with this

et t et t time a scaling functior(x)=C,(e¥), and the time reparam-

2 12 8 2 3 (14)  etrizationh(t)=In[L(t)]. Furthermore, because the addition

4 tf th ts of two positive operators is a positive operator, we conclude
that the additive form

should be finite numbers. Writing
L(tw)

C(T+tW1tW):Cl(|T|)+qC2 L(t +T)
w

(21)

o
Lot _ t_3: ( t_3> (t_z) tiL(M—l)_tI(u—l)_)w, (15)
t4 e\t | s . o . .
is admissible if each term is admissible separately.

we notice that under these circumstand8gging(ts,ts)
—C,(): even though the two correlatioi,4in4(t2,t;) and
Caging(ts,t2) can be as close to 1 as one wishes, the third consider a correlation having scaling form
correlation Cg4ing(ts,t;) takes the smallest possible value
(usually zerg. Hence, the scaling violates E@) or (9), and
is hence not possible. The argument goes through for any C(T+tW1tW):C(
g(t,) that grows faster than, .

In order to extend the reasoning to the general ¢abe it
suffices to note that one can replace the observa(g} by
a smoothed set

Ill. SUPERAGING

Int,,
In(7+t,,)

: (22

where the times are adimensional. The scaling happens in
several real systems, it corresponds, for example, to logarith-
mic domain growth4]. It is an example of a “superaging”
. [5] situation[i.e., one where the scaling functi@rt) in the
Ao(ti)ZJ dt,A(t,)e(tuti)Z/az (16) form (19) grows slower than a power of tinhe

0 Let us show that
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Int,, w0 r The reason why Definition 2 is the natural one for the
C(—) ~f d,up(,u)ex;{ — —) analytic treatmenf2,3] is that this way of introducing time
In(7+1w) 1 th scales is insensitive to time reparametrizatipngh(t), since
times enter only through their ordering. This is not the case
) (23 of Definition 1, under which a one-time scale dependence
tw/(7+t,) becomes an infinite-time scale dependence upon
reparametrization— Int. Physically, robustness with respect
to time reparametrizations is a relevant feature of a charac-
terization of slow dynamics since in such systems a very
weak perturbation can have the effect of time reparametriz-
) ing the aging part of the correlations and responses. The
- I P _ix—w) most clear examples of this are the growth law of domains in
L d,u,p(,u,)eX[{ tv’(,) Jl dup(p)exp—ty ) coarsening systems—which is taken from power law to loga-
rithmic by an arbitrarily weak pinning field, and the effect of
- a0 shear in soft glasses, which eliminates aging altogether.
NL dup(p)O(u=x), (24 In conclusion, we have emphasized that a two-time scal-
ing is not a generic function of two variables, but has limi-
where® is the step function. The last relation becomes exactations that become manifest when one considers three suc-
in the limit of larget,,. The integral forx<1 yields 1, and cessive times.
for x>1

d
with  p(u)=-— @C(;

Put x=In7/Int,. For t,—~, we have that It,/[In(7
+t,)]~1/x for x>1, and Int,/[In(7+t,)]~1 for x<1.
Hence,

APPENDIX

o 1
f d,u,p(,u)ZC(;), (25 Taking arbitrary complex numbets, . .. v, itis easy to
X show that, just as in the real case, both for the coherent and

where we have used the form pfin Eq. (23). for the incoherent function

Equation(23) shows that one obtains an admissible cor- r
relation function as a superposition of infinitely many terms E Zi,-vi*vaO V vy, 0;. (A1)
of the form(12) havingu>1. hi=1

This implies that all the eigenvalues of anyr matrix Z;;
IV. MANY TIME SCALES are non-negativelWe have dropped the labiic andcoh,

The distinction between aging systems having two oS the derivation applies to both. _
more than two time scales is of importance since it helps L€t US obtain a bound9). Demanding that the determi-

distinguish the underlying physics. Indeed, the absence dfant of a 3<3 matrix be positive, we have

many time scales in spin glass dynamics is a strong obstacle , 2 2 2 * * o%

for the identification of realistic systems with their mean- 11202~ |22d "= 203"+ ZuaZ oo 15+ 232 232132%%)
field counterpar{2,6]. Under these circumstances, it is im-

portant to point out that two definitions of “many time Rearranging terms,
scales” found in the literature are inequivalent.

Consider the following definition of time scale. (1—12105)(1—Z,4?) =Z13— Z1Z 9% (A3)

Definition 1 If a correlation is a sum of terms of the form
C.(r1g,(t,)), with eachg,(t,) growing at a different rate, PUtDij=(1—Z;). Then, Eq.(A3) reads
then each such term defines a different time scale. With this 2 2 2
definition the logarithmic domain-growth lay22) has infi- (1=1229%)(1=1224")=[D 13~ D12~ D25t D12 (A%)
nitely many time scales, as we see from EZp).

A different definition that arises naturally in the construc- Applying the inequalitya|<|a—b|+|b| to Eq.(A4) we ob-
tion of the analytic solution of the aging dynamics of glasstain
models[3,2] is the following.

Definition 2 Two correlation values andc* belong to  |D1gd<|D13— Do~ D23+ DD 53 +[D 1o+ Doz—DyoDod,
the same time scale if, given tha@(t,,t;)=c andC(t3,t,) (A5)
=c*, C(t;,t;) stays smaller than min(c*) in the large time
limit.
~ Now, itis easy to check that with this definition the scal- D14 <(1—|Z19?)Y(1—|Zp4?) 2+ |D1p+ Dys— D1D 0.
ing (22) consists of a single time scale, and it can be taken by (A6)
the reparametrization— h(t) to the simple aging form. We
conclude that, depending on the definition of “time scale,” We can express this bound exclusively in termsCg$ and
we have in this case one or infinitely many slow time scalesC,;. First, note that
Hence, we have shown that definitions 1 and 2 are not, in
general equivalent. 1=z =(1-|C;j|> (A7)

which, inserting Eq(A4) implies
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since addition of the square of the imaginary part can only  F=(1—|C,|2) Y41~ |Cypg?) ¥+ 2|1 - Cy 2

make the bracket larger. We also have
Djj[>=[1-Z;;|*>=1-2C;; +]Z;|?
=2(1-Cyj))—(1-1Z;/)=2(1-Cy)), (A8)

where we have used thfZ;;|><1. Inserting these two last
inequalities in Eq(A6), we get

[1-Zd<F (A9)

with

+12|1-Cyd V2+2|1-C1¥91-Cyd 2 (A10)

Z lies within a circle of radiusF in the complex plane cen-
tered in one, hence we get

Ci=1-F (A11)

We can see that whe@,, and C,; are close to unityCq;
cannot be small. Perhaps a better or simpler bound can be
obtained, but this is enough for the present purposes.
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